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CARDINAL HERMITE SPLINE INTERPOLATION 
WITH SHIFTED NODES 

GERLIND PLONKA AND MANFRED TASCHE 

ABSTRACT. Generalized cardinal Hermite spline interpolation is considered. A 
special case of this problem is the classical cardinal Hermite spline interpolation 
with shifted nodes. By means of a corresponding symbol new representations of 
the cardinal Hermite fundamental splines can be given. Furthermore, a new ef- 
ficient algorithm for the computation of the cardinal Hermite spline interpolant 
is obtained, which is mainly based on fast Fourier transform. This algorithm 
is shown to be also applicable to computing the periodic Hermite spline inter- 
polant. In both cases we only use necessary and sufficient conditions for the 
existence and uniqueness of the corresponding Hermite spline interpolant. 

1. INTRODUCTION 

In this paper we shall construct new efficient algorithms for the computation 
of the Hermite fundamental splines and the Hermite spline interpolant. 

We use standard notation: Let f^ be the Fourier transform 

fA(u) fjf(x)e-iux dx (u E R) 
-00 

of f E L1 (R) . Assume that 
00 Z 

fA(u + 2 7j) (u E R) 
j=-oo 

is uniformly convergent on R. Then f- with 
00 

f(u) := E: f^ (u +2 7j) (U ER) 
j=-oC 

is called the 2ir-periodization of fA. The Poisson summation formula reads 
as follows: 

00 

f (u) = E f(j)e-iuj. 
j=-oC 

Consider equidistant knots with multiplicity 2, 

X. *- I i/2] {i E Z, 
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where [1/2] denotes the integer part of j/2. With Nm 2 E Cm-2(R) (v- 
0, 1) we denote the normalized B-splines of degree m (m > 2) and defect 2 
with knots xv, x+, .. ,+m+l 

Let SO (Z) be the set of all finite linear combinations of shifts of N2 
(v = O, 1): 

00 

,(ajNm2 0(x -j) +bjNm2 I (x- j)) (x E R; aj, bj E R). 
j=-ac 

The LI (R)-closure of Sm 2 (Z) is denoted by Sm,2(Z). We consider the follow- 
ing generalized cardinal Hermite spline interpolation problem: For given data 
sequences y(o) :{y5O)} i. 0 ,I y(l) := {y5l)} I 0 - E 11 , and shift parameters 
To, TI E R with 0 < To < TrI < 1, find a spline function s E Sm,2(Z) such that 

(1) ~s(k + To) = y( ), [s(k + *:To, TI] = Y ( ) (k E Z), 

where [s(k + *): To, TI] denotes the divided difference. In the case To = Tm E 
(0, 1] we obtain the classical cardinal Hermite spline interpolation problem. 

For the sake of simplicity, we describe our method only for splines of defect 
2. But the procedure can be simply generalized to the corresponding Hermite in- 
terpolation problem for splines with higher defect. Further, the Hermite spline 
interpolation problem (1) is of special interest in applications. The existence 
and uniqueness problem is generally solved only for defect 2 (cf. [5]). 

In the literature, cardinal Hermite spline interpolation problems have been 
investigated mainly in the special case of nonshifted nodes (cf. [2, 10, 1]). 
In particular, the construction of fundamental splines and the existence and 
uniqueness of solutions have been studied. The periodic Hermite spline inter- 
polation for defect r > 1 (r E N) with interpolation nodes To = TI = .. = 

Tr,l = 1 have been treated in [3] and [4]. The more general periodic case 
To = TI - * = Tr_I E (0, 1] can be found in [9]. 

Contrary to most of the other papers dealing with periodic or cardinal Her- 
mite spline interpolation (cf. [8, 9, 3, 4]) we do not use the normal B-splines 
Nm( - k) (k E Z) and their derivatives (or their periodizations) as a basis for 
the spline space with higher defect, but instead B-splines with multiple knots. 

In ?2, we introduce a new representation of the symbol of the problem con- 
sidered. This symbol will be the main tool of our approach to the cardinal 
fundamental splines in ?3. Using fast Fourier transform, we obtain a new effi- 
cient algorithm for the computation of the cardinal Hermite spline interpolant 
in ?4. Further, the close connection between periodic and cardinal Hermite 
spline interpolation will be considered. In ?5, it will be shown that one and 
the same algorithm can be applied to the computation of the cardinal and the 
periodic spline interpolants. 

2. SYMBOL OF CARDINAL HERMITE SPLINE INTERPOLATION 

Similar to Lagrange spline interpolation, we have to investigate the symbol 
of the interpolation problem (1). First we introduce the Euler-Frobenius poly- 
nomials of multiplicity 2 in order to construct the symbol for the generalized 
Hermite spline interpolation problem (1). 
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With the help of B-splines with double knots, the generalized Euler-Frobenius 
polynomials of multiplicity 2 with shift parameter x E R can be defined by 

00 

H,',,(x ,z) N= , N , (j+ x) zi (v = 0, 1; ZE). 
j=-oo 

Since suppN,2 (v = 0, 1) is compact, the functions H2, (v = 0, 1) are 
well defined. We are especially interested in the behavior of H,v (V = 0, 1) 

on the unit circle. Therefore, we put for u e R 

h2 v(x, u) := Hm2 v (x, e-'u) (x E Rl). 

Then we obtain the following properties of h2 2M. 

Lemma 2.1. Let m E N (m > 2) and u, x E R be fixed. Then we have 
(i) 

h2v(l, u) = eiuh, v(, u) (v= O, 1), 
(ii) 

Oxih2 v(x? 1 u)=e?iu4 jh2 V(x, u) 

(v=0, 1;j=0,...,m-2), 

(iii) 

h2 ( X u) M h2 0(x, u) - 1 h2 (xu) 

For a proof we refer to [6]. 
Now for x, xo, xi, u E R we define the following determinants: 

h2 (x X U) =det (h,o(XoU) h ( ,I(xo u)') 

h2t'xrxx1uY~~~~~~~~~~~det(~~h ho(xi,u) h1xu 
h2 (x R [xo, xl], U) =det (h2 mE? ]U 2I'ox]a 

with 
h2jvxoS xi](u):= [hmVs u)2O l (v = O, 1). 

Note that the functions h 2 and h2 are 27r-periodic in u. 

Theorem 2.2. Let N, m E N (m > 2) and O < ro < T1 < 1 be given. Then the 
cardinal Hermite interpolation problem (1) is uniquely solvable if and only if 

(2) h2(TO, [To, TI], U) :A ? (U E (-7, 7])- 

The relation (2) is equivalent to 

(3) [Bm: To,TI]:O, 

where Bm denotes the mth Bernoulli polynomial. 
Proof. The spline function s E Sm,2 (Z) can be written in the form 

00 

s (x) = E (ajNmo(x -j) bjNm l(X-j)) (X E R) 

J=-oo 
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with {a1}jJ , {bJ}?=o e 11 . Then for k E Z, the interpolation conditions 
(1) read as follows: 

00 

,(aj N,2, 0(To + k -j) + bj N,2, I(To + k -j)) = y( ), 
j4-a j=-c O 

,(aj [N,2,,O(. + k- j): To,9 TI] + bj[Nm2l( + k-j): Tog TI]) = Y() 

J=-oo 

We introduce the following continuous functions defined on (-it, it]: 

a(u) = ,aj e -uj b(u) := Ebje-iu 
0=-o0 0=-00 

00 00 

j(?)(u) := e y)-'uj (1) (u) = ()-iuj 
j=-ac j=-ao 

By (4) we find after a short calculation 

( h ( o2,U) h(2 (To, U) 
Vh,o[T0, Tj]a 2 [?t](u)J h bJ- 1(u)J 

For given data y(O) and y(l) the functions a and b are uniquely determined 
by (1) if and only if 

h2 (z[zz] det (h o 2 (TOg U) h2 1 (To, u)) 

does not vanish on (-it, t] . The equivalence of (2) and (3) is shown in [5]. 5 

The function h2 (To, [To, T ],*) is called the symbol of the generalized Her- 
mite spline interpolation problem (1). 

Example 2.3. For x, xo, x E (O, 1], u E R, we find in the case m = 2, using 

h 2 O(x . u) = 2x( 1 - x), h 2, 1 (x, u) = x 2 + ( 1 - x) 2e- iu 

the symbol of the generalized Hermite spline interpolation problem 

h22(xo, [xo, x1], u) = 2(xoxl - (1 - xo)(1 - x)e-iu), 

and in the case m = 3, using 

h2,O(x, u) = I (x2(6 - 5x) + (1 - x)3e-u), 

h2, 1 (x, u) = I (x3 + (1 - X)2(5x + 1)e-iu), 

that 

h 2 (Xo ,[Xo 9XI] U) 

= (X2Xl2 - (Xo( 1 - xo) + xi(1 - x1) + 2xoxl(1 - xo)(1 - xi))e-'u 

+ (1 - XO)2(1 - XI)2e-2iu). 5 

The following properties for the functions h2 can be easily proved from the 
definition (see [6]). 
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Lemma 2.4. Let m E N (m > 2), xo, xi E R, and u E (-7t, 7r] befixed. Then 
(i) 

h2 (xo, XI, u) = -h2 (XI, Xo, U), 

h2 (xo, [xo, x1], u) = h2 (XI, [Xo, X1], U), 

(ii) 

h2 (xo, xI, u + 2k) = he2 (Xo, x, u) (k E Z), 
h2 (xo , X, u) = e0uh, 2 (Xo, XI, u), 

h2 (Xo, xi t1,U) = e ?iU h2 (Xo, XI, U), 

h 2(Xo, Xo, U= 0 

(i*i) 

h2 (xo + 1, [xo + 1, xo + 1], u) = e2iuh2 (xo, [xo, x0], u), 

h2(xo -1, [xo -1, xo - 1], u) = e-2iuh2 (xo, [xo, xo], u), 

h2 (xo, [xo, xo + k], u) = 0 (k E Z). 

For the computation of cardinal fundamental splines and cardinal Hermite 
spline interpolants by discrete Fourier transform we need the vectors 

h2m a,(x) := (h 2 ,(x, 27rjlN))jN-1 (v = O, 1; x E R), 

h2(xo, xl):= (h 2 (Xo, x,, 27rjlN) )Nf-Il (Xo, Xi E DR) 

and the corresponding divided differences with respect to x, 

h2 ,v [xo xiX1]:= (h 2 ,v[xo xl ] (27 j/N)) N-o 
I 

(v = O, 1 ), 

h2 (XO X [xo, xi ) (h 2 (Xo, [xo, xl ], 27r "IN) )N.f-o 

with xo, xi E R . 
We now present an efficient algorithm for the computation of h2 v(x) (v = 

0, 1). Let the N-periodic B-splines p2, of degree m (m ?2) and defect 2 
be defined by 

00 

Pm2 v(x) : = Nm2,v(x- 1N) (v = 0, 1; X E R). 
I=-oo 

We put 
nm, v (x) =(Pm2 v(x + k) )N_O ( = O, 1). 

Then from 
N-1 

Pm2 z(x + k)Wjk = hm 2 
v(x, 27rj/N) (v = , 1; j = O, N..... - N1) 

k=O 

with WN:= exp(-27ri/N) it follows that 

hH d(x)o= FNnmouri(X) (i o, 1). 

Here, FN := (W jk) jN I_ denotes the Fourier matrix of order N . We obtain: 
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Algorithm 2.5. Computation of the auxiliary vectors h2 u(x) (v = O, 1) 

Input: m spline degree (m e N, m > 2), 
N period (NE N, N power of 2), 
x (x E R). 

1. Compute P2,v(x + j) (v =O, 1; j = O, ..., N - 1) by the B-spline 
recursion formula. Put 

m(X) (p2) Uv(X + j)) Nol 
N 

RN(V = 0, 1). 
2. Compute h2 (x) := FNnm, v (x) (vi = 0, 1) by fast Fourier transform. 

Output: h2 u(x) = (h2 ,(x, 27U/N))7N[i (v = O, 1). 

By the use of fast Fourier transform Algorithm 2.5 requires only O(N log N) 
arithmetic operations. The other vectors h2, . [xo, xi ] (v = 0, 1), h2 (xo, xI), 
and h 2(xo, [xo, xI]) can be computed in the same manner. 

Remark 2.6. For solving the generalized Hermite spline interpolation problem 
for r > 2, the Euler-Frobenius functions hr v (v = 0, ..., r - 1) can be 
similarly introduced by using B-splines with r-fold knots. 

3. CARDINAL FUNDAMENTAL SPLINES 

With the help of B-splines with double knots we are able to find new explicit 
formulas for the cardinal fundamental splines (see Figures 1 and 2): 

Theorem 3.1. Let m E N (m > 2) and 0 < To < T1 < 1 be given such that 
h2(TO, [To, T1] U) 5# 0 (u E (-7r, 7]) is satisfied. Then Lm,v E Sm,2(Z), 
where 

Lm,o(x) 2 h (T, [TO, I] U) 
eiu du (x E R), 

Lm (x):= [ Dm,i(zo,i,u) eiux du (x E R) 

with 

D (N,0)A (U) (N2m u) /(U) 

Dm,O(To,~~~~~~~ TI um, de 
M 

)(m U (u E R)) 

are the cardinal fundamental splines of the Hermite spline interpolation problem 
( 1 ), i.e., there holds 

Lm6 (k + T0)c T,k (keu) [Lmo(k+ ) To, TiO (keZ), 
Lm,I(k+TO, O (keZ) [Lm,I(k+).T0, 

U i =o,k (k eZ) 

The coefficientsa l j,f,e, ll ine ( s = 0, 1) in the representation of Lm,ton by 

00 

Lm,v(x)= k (li,T) oN =o(x-j) +lk,j,N,N ( -I)) (To=0, 1;=x E ]) 
J=-00 
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are given by 

I,0,0 1 h2 &[o, Tl](, u) 
Ijo' 1 - o[O eT (2 uj du 

lj,01,0=-7 h2 (TO [TO, T] )eiU du, 

2j7J h hm?(t' ou) eiujdu, 

Proof. Since the trigonometric polynomial h (To, [To, I1],*) satisfies the con- 
dition h (To, [t0, Ti], U) $ 0 (U e (-o, T]), there exists a > 0 such that 

Ihm(t, [To, Ti], u)I > a > 0 for all u e R. FuTher, U e Cm-2(R) (v - 

0, 1) yields (Nm >)A(u) = O(IuK-m+1) (jut -> oc), i.e., (N, >)A (vo = 0, 1) 
are absolutely integrable for m > 3. For m = 2 this assertion follows from 
Example 4.2. Hence, the functions Lm , o and Lm, 1 are well defined and con- 
tinuous. 

1. We show that (Lm,0(* + To)) _ 1 and 1 0 , where l(x) : 
[Lm,0(X +*): To, T] U. By (5) we find 

(Dm0 (To 0, T] , U) 

Using the Poisson summation formula, we have 

00 

(N v + r))>(u) = Nm v(k +T)eiuk =hm v(t u) 
k=-oo 

(ii = 0, 1; T, UE). 

Consequently, 

(Lm ~ ~~ Z0 + +o)(U h (To, [to, TI], u) 

_(Nm,l ('+ To))( (+ 27ij)hm,o[to, Ti](U)'\ 

hd(To, [To, T1], U) -1 

Ifor all u E R. 

wNe obti() n= fo(r + e To, tha t2 = 0, 1; X u e t 

are abolutely intgrbl fo m >1 3that= hsaseto olosfo 
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(( (n2 0)A(u + 27rj)hM J[To, Tj](U) 

j'~'(u) = Z h~ h(To, [To, TI], U) j=-ac \ 

(n2 1)A(u + 27rj)h2 o[To, Tj](U) 

h2 (TO, [To, TI], U) 

hm hJ[To T](U)hm 1[To, Tj](U)-hm I[To, Tl](u)hm O[TO, Tj](U) _ 

h2 (TO, [To, TI], U) 

Thus, we have for all k E Z 

Lm ,o(k + TO) = 2 X (Lm,( + TO))A(u)eiuk du 

- K J (Lm,o( + To)) ^(u)eiuk du = 0, k 

and 

[Lm,0(k + ): To, TI] = 2 
J lA(u)eiuk du = ! j lr(u)eiuk du = 0. 

2. Using the Poisson summation formula, we obtain 

1 f0 Dm,O(TO, TI,U)euxd Lm, 0(x) = 2 2( eiux du 
Lm,(X)yr ]h2 (TO, [TO, TI], U) 

1 7r 

27r J h2(To, [To, TI], U) 
/ oo 

x ( (Nm )A(U+ 27rj)hm, I[TO, Tj](u)ei(u+2Ui)x 
kj=-oc 

- Z (Nm2, )A(U + 27rj)h2 o[To, Tl](u)e'(u+2nj)x du 
j=-oc 

_ 1 f7 ((X aNm2 k=- O(k + x)e iuk)hM 1[TO, Tj](U) 

27 -z h2 (TO, [To, TI], U) 

(k??=-XIN, 1(k + x)e iuk)M O[TO, T](U) 

cc ~ ~ ~ ~ ~ ~ ~ ~ ~ d h2(TO, [TO, TI], U) 

The assertionm - j)L+p j,O,uN y 5 
j=-oo 

with 

2 Jnhm (To, [To, TI1] , U) 

Z = 1 j hmh,2 [T? Tj](U) eUd 

The assertion for Lm,I1 can be proved analogously.o 
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4. SOLUTION OF THE CARDINAL HERMITE SPLINE INTERPOLATION PROBLEM 

Let mEN (m>2) and 0<To< T <?1 begivensuchthat 

h2(To, [TO, TI], U) 0 ? (U E (-7r, 7r]). 

If y(O) := {yO)}1o, Y(1) := {y5I)}J=-0 E 11 are given data sequences, then 
a continuous solution s E Sm, 2(Z) (m > 2) of the cardinal Hermite spline 
interpolation problem (1) can be written as follows: 

00 

s(x) = E (y(?)Lm,O(x -j) +Yy51Lm,I(x -j)). 
J=-o0 

This series is absolutely and uniformly convergent on R. Using the properties 
of Fourier transform, we find 

00 00 

sA (u) = LA,(u) ( y0)e-iUl +Lt1(u) L y(e-iul (U E R). 
l=-00 l=-00 

For the rth derivative S(r) (1 < r < m - 2) there follows 

(S(r))A(U) = (iU)rsA (U) 

' ~~00 00\ 

= (iu)r (Lmo(u) E y;e-ul + Lm I(u) E y()e iU1 ) 
1 =-00 J=-00 

with u E R. Since (i_)m-2L , E L1(R) (v = 0, 1), we find that (S(r))A E 

L1 (R). Inverse Fourier transform yields 

1 00 

(7) S(r)(X) = I j (iu)rsA(u)eiux du. 

We shall compute this solution s and its derivatives S(r) (1 < r ? m - 2) by 
means of fast Fourier transform. 

Assume that y(O) - O, y(l) = 0 for 1 0 {0, ..., N - 1}. This assumption 
makes sense, since y(v) E 11 (v = 0, 1). Replacing in (7) the integration over 
R by integration over [-7ru, wur] (,u E N), i.e., 

1 A(j A 
N-1 N-1 

\ilu i 
(8) 0 L (U) ou (O)e-11u + Ly(1(u / (iu)reiux du, 

~~ I yl1= 1=0 

we compute (8) by the rectangle rule with step length 27z/N: 

N E L , N IN 
n EGfi,N 1=0 
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with G,N :={n E Z: yN/2 < n < /uN/2} and WN := exp(-27ri/N). Instead 
of S(r)(jl/j) (j = 0, ..., iN - 1) we obtain the approximate value 

1 27rin )r ( (27rn )N-i 

N ~ ~ ~ ~ ~~~~~- 

+Lr^n I ( N) Y)WN) W-N ? ~~~ (2lrin l~~~~ =0 

Note from (5) that 

L A( =Dm,v (TO, TI, U) 0 1 m ,v(u) h2 (To, [To, TI], U) (V = 0, 1) 

with Dm, v as in Theorem 3.1. 
Thus, we find the following algorithm for the computation of the cardinal 

Hermite spline interpolant s E Sm, 2(Z) and its derivatives: 

Algorithm 4.1. Computation of the cardinal Hermite spline interpolant and its 
derivatives 

Input: m spline degree (m E N, m > 2), 
N power of 2, 
, power of 2, 

y(o) 9(i) data sequences with y5v) = 0 (j {O ..., N- 1}; 
v=O, 1), 

r order of a derivative (O < r < m - 2), 

Tog Ti shift parameters (O < To ? Ti < 1) with 
[Bm: To, TI] 40, 

(N7m o)^, (N,m i)A Fourier transforms of Nm, 0 and N, 1. 

1. Precompute for v = 0, 1 the vectors 

(h2 , v (TO,9 27rl/N) )IN=O 1, (h2 ,,v[TO, Tl1] (27rl/N) )IN=O1, 

(h2(To , [TO,9 TI],9 27rl/N) )N 

by Algorithm 2.5 and by the definitions. 
2. Precompute by (6) for all n E G/1N 

Dm,o(TO, Ti, 27rn/N) Dm,I(TO, T1, 27rn/N). 

3. Compute by fast Fourier transform 
N-1 N-1 

YJ := , k)Wjk, y(l) = y(l) wjk (j =O N- ) E Yk Y -N k N 
k=0 k=0 

4. Form for all n E G/1N 

2rcin rDm, o(To, T1, 27rn/N)J(P) + Dm, I (Tro, T1, 27rn/N)5Q') n NJ h2(To, [TO TI], 27rn'/N) 
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-5 5 

FIGURE 1. Cardinal fundamental spline L5, 0 for the shift pa- 
rameters To = 0.3, Tz = 0.8 

with n' := n mod N, i.e., n' is the nonnegative residue of n modulo N 
defined by n' _ n (mod N) and 0 < n' < N- 1 . 

5. Put for all n E GN with k:= n mod(MN) 

vr := tn. 

6. Compute by fast Fourier transform 

r AN-1Ir j 
S.=N E VkwN (j= * ,,N-1). 

k=O 

Output: s r approximate value of S(r) (/jl ) (j = 0, . .. , jiN - 1). The cardinal 
fundamental splines L5 o and L5, 1 for To = 0.3, iT = 0.8 (see Figures 1 and 
2) are obtained by Algorithm 4.1. 

The main operations of this algorithm are two discrete Fourier transforms of 
length N in step 3, and the discrete Fourier transform of length ,uN in step 
6. Since we use fast Fourier transform, the algorithm possesses an arithmetical 
complexity of O(,uN(log,uN)) and computes MuN approximate values of S(r) 

all at once. The numerical stability of the algorithm is mainly determined by 

min{lh 2 (Tog [Tog TI] , 27rkIN)|; k = 0, .. ., N- 1}, 

because in step 4 one has to divide by this quantity. 
The Fourier transforms of Nm2 (v = 0, 1 ) can be easily precomputed, since 

the B-splines have a compact support. 
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0.5 

-5~~~~~~~~~~~~~~ 5 

FIGURE 2. Cardinal fundamental spline L5,1 for the shift pa- 
rameters z0 = 0.3, Ti = 0.8 

Example 4.2. The Fourier transforms of N ,2 (m = 2, 3; v =0, 1), for 
u :$ 0, are 

(N2 0)(u) = ((-U + 2i)eiu - u - 2i), 

(N2, 1)A(U) = 2 (ie2iu + 2ueiu + i) 

(N2,0)A(U) = 3 (e-2iu + 4(u + )e-iu + 2iu - 5), 

)^ (u) = -4((-2iu - 5)e2u + (- iu + l)eiu + 1). 

5. PERIODIc HERMITE SPLINE INTERPOLATION 

Finally, we want to show a close connection between periodic and cardinal 
spline interpolation. We shall find that Algorithm 4.1 can also be used for the 
computation of the periodic Hermite spline interpolant and its derivatives. 

Let N, m E N (m > 2) be fixed. By SN 2(Z) we denote the set of all 
functions 

N-1 

s(x) := (ajPm2 O(x -j) + bjPm2 I (x -j)) (X E R) 
j=O 

with arbitrary coefficients aj, bj E R (j = 0,..., N- 1). Furthermore, let 

(t) - R (v = 0, 1; j e Z) with YJV) = Y(vN be given N-periodic data, which 
can be completely described by the vectors 

y(V) (y(v), . ,YN) 1)T E RN (v = 0, 1). 
We consider the following generalized N-periodic Hermite spline interpolation 
problem: For given shift parameters To, TI E R with 0 < To < T1 ? 1, find an 
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N-periodic spline function S E SN 2 (Z) such that 

0 0) S(j +TO) = y( ) [S(j + ): To0, TI] =YJ1 (i E Z)- 

In [5] it is shown that the periodic Hermite spline interpolation problem is 
uniquely solvable if and only if 

h2 (To, [To, TI], 27rnIN) 54 0 (n = O,.., N- 1). 
Again, this condition is equivalent to (3). Let LmN E SmN 2(Z) (V = 0, 1) 

be the N-periodic fundamental splines for the interpolation problem (10), i.e., 
there holds 

LN o(k+ TO) = Nk, [LmN 0(k + ):T0,zI] = k (k E Z), 

LmN (k+TO)=0, [ (k+T):o, T1]=3Ak (kEZ) 
with 

AN . 1, k _ Ok(mod N), 
'O, k * 

09 
, k 0 0 (mod N). 

The N-periodic fundamental splines LN v can be represented as follows (cf. 
[6]): 

Lm,kXy L N-1 h2 (X, [TO, TI], 27rj/N) (x e R) 

Lm ,o1(x) :-N h2 (TO [TO TI] ,2 /jN) (x 1) 

Assume that (3) is satisfied. Then the following connection between N- 
periodic and cardinal fundamental splines can be observed: 

00 

L N>() E Lm,v (x +IN) (v= 0 1). 
l=-oo 

Since Lm,v e LI(IR), the series is absolutely and uniformly convergent on IR. 
For the Fourier coefficients of LNv with respect to the orthogonal system 
{e2Xik/IN; k e Z} we get 

'JN 
Ck(LN, v) = LmN v(x)e-2Xikx/N dx 

N 0? 

N Z E Lm, v(x + IN)e -2ikx/N dx 
l=-00 

LmN v L (x) e -2ikxlN-dx -LA (27kIN). 
NC] ~~d )u N m,u2(/) 

Now for the computation of the N-periodic fundamental splines and their 
derivatives we can start from 

(L N v)(r)(X) - (27ril/N)rci(LN, )e2Xilx/N 
l=-oo 

100 

- Z (27ril/N)rLA,V(27d/N)e2xilxlN 
1=-oo 
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We consider the truncated sum 

- Z (27in/N)rL',,(27rn/N)e2Xixn/N 
nEGuN 

and obtain the following approximate value of (LN )(r)(k/l) (k e GpN): 

(yNk) 1 Z (27in/N)rL^ 11(27rn/N)e2Xiknl(,uN). 
nEG.,,N 

With the help of the N-periodic fundamental splines LN v (v = -, 1), a con- 
tinuous solution S e SmN 2(Z) of the N-periodic Hermite spline interpolation 
problem (10) can be written as follows: 

N-1 

s(x) = ( (0)LN (x-j) + Y LN 1(X j)) 
j=0 

where y() :y v), . YV) 1)' E RN (v - 0, 1) are given data vectors. By 

(L,(X _j))(r) N z (2lifl) 
L" 

n,(270n/N)e2 nxNw~ 
flEGAN 

we find N()X j - rl)~ _ :2tixNn N L v )X 01 ,(2rnN LI y(27)nN)e 

27r inN-N1\ 

+L",1(2irn/N) N-i y(7rn ) 1/N 
1=0 

with n' := n mod N. That means, instead of s(r)(j/l) (j = 0, 1, ..., jN- 
1; r = 0, ... , m - 1) we obtain the approximate value 

s :=~ Z (27rinf) rLA ( N-1 

nlEGjuN k=0 

N-1 

+ Lm 1 (27 n/N) ,: YkI WN ) ynj 
k=O 

This formula for the rth derivative of the N-periodic Hermite spline inter- 
polant is equivalent to the formula (9) for the rth derivative of the cardinal 
Hermite spline interpolant. Thus, the values computed in Algorithm 4.1 can also 
be considered as approximate values of the rth derivatives of the N-periodic 
Hermite spline interpolant. 
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